

Gerätehandbuch

22xx...BX4 CSD/CCD/COD

32xx...BX4 CS/CC/CO

3564...B CS/CC/CO

WE CREATE MOTION DE

<u>Impressum</u>

Version:

1. Auflage, 6-09-2017

Copyright by Dr. Fritz Faulhaber GmbH & Co. KG Daimlerstr. 23 / 25 · 71101 Schönaich

Alle Rechte, auch die der Übersetzung, vorbehalten. Ohne vorherige ausdrückliche schriftliche Genehmigung der Dr. Fritz Faulhaber GmbH & Co. KG darf kein Teil dieser Beschreibung vervielfältigt, reproduziert, in einem Informationssystem gespeichert oder verarbeitet oder in anderer Form weiter übertragen werden.

Dieses Dokument wurde mit Sorgfalt erstellt. Die Dr. Fritz Faulhaber GmbH & Co. KG übernimmt jedoch für eventuelle Irrtümer in diesem Dokument und deren Folgen keine Haftung. Ebenso wird keine Haftung für direkte Schäden oder Folgeschäden übernommen, die sich aus einem unsachgemäßen Gebrauch der Geräte ergeben.

Bei der Anwendung der Geräte sind die einschlägigen Vorschriften bezüglich Sicherheitstechnik und Funkentstörung sowie die Vorgaben dieses Dokuments zu beachten.

Änderungen vorbehalten.

Die jeweils aktuelle Version dieses Dokuments finden Sie auf der Internetseite von FAULHABER: www.faulhaber.com

<u>Inhalt</u>

1	Zu di	esem Dok	ument		4
	1.1	Gültigke	it dieses [Ookuments	4
	1.2	Mitgelte	nde Doku	umente	4
	1.3	Umgang	mit diese	em Dokument	4
	1.4	Abkürzu	ngsverzei	ichnis	5
	1.5	Symbole	und Ken	nzeichnungen	6
2	Siche	rheit			. 7
	2.1	Bestimm	ungsgem	äße Verwendung	. 7
	2.2	Sicherhe	itshinwei	se	7
	2.3	Umgebu	ngsbedin	gungen	8
	2.4	EG-Richt	linien zur	Produktsicherheit	8
3	Produ	uktbeschr	eibung		. 9
	3.1	Allgeme	ine Produ	ıktbeschreibung	9
	3.2	Produkti	nformation	on	10
	3.3	Produkty	varianten	·	11
4	Insta	llation			12
	4.1	Montage	e		12
		4.1.1	Montage	ehinweise	12
		4.1.2	Montage	e des Motors	13
	4.2	Elektriscl		iluss	
		4.2.1		zum elektrischen Anschluss	
		4.2.2	Motor el 4.2.2.1	ektrisch anschließen	
			4.2.2.1	EMV-Schutzmaßnahmen	
		4.2.3		ıngsanschlüsse	
			4.2.3.1	Anschlussbelegung	
			4.2.3.2 4.2.3.3	I/O-Schaltbilder	
			4.2.3.4	Anschlussbeispiele Motorbaureihe 32xxBX4	
			4.2.3.5	Anschlussbeispiele Kommunikation	
5	Wart	ung			27
	5.1	Wartung	gshinweis	e	27
	5.2	Wartung	gstätigkei [.]	ten	27
	5.3	Störungs	shilfe		27
6	Zube	hör			28
7	Gewä	ährleistun	ıg		29

1 Zu diesem Dokument

1.1 Gültigkeit dieses Dokuments

Dieses Dokument beschreibt Installation und Gebrauch folgender Baureihen:

- 22xx...BX4 CSD/CCD/COD
- 32xx...BX4 CS/CC/CO
- 3564...B CS/CC/CO

Dieses Dokument richtet sich an ausgebildete Fachkräfte mit Befähigung zur Montage und zum elektrischen Anschluss des Produkts.

Alle Angaben in diesem Dokument beziehen sich auf Standardausführungen der oben genannten Baureihen. Änderungen auf Grund von kundenspezifischen Ausführungen dem Beilageblatt entnehmen.

1.2 Mitgeltende Dokumente

Für bestimmte Handlungsschritte bei der Inbetriebnahme und Bedienung der FAULHABER Produkte sind zusätzliche Informationen aus folgenden Handbüchern hilfreich:

Handbuch	Beschreibung
Kommunikationshandbuch	Schnittstellenbeschreibung RS232
Kommunikationshandbuch	Schnittstellenbeschreibung CANopen mit FAULHABER Kanal
Kommunikationshandbuch	Schnittstellenbeschreibung CANopen CiA 402
Softwarehandbuch	Bedienungsanleitung zur FAULHABER Motion Manager PC Software

Diese Handbücher können im PDF-Format von der Internetseite www.faulhaber.com/manuals heruntergeladen werden.

1.3 Umgang mit diesem Dokument

- Dokument vor der Konfiguration aufmerksam lesen, insbesondere das Kapitel Sicherheit.
- Dokument während der Lebensdauer des Produkts aufbewahren.
- Dokument dem Bedien- und ggf. Wartungspersonal jederzeit zugänglich halten.
- Dokument an jeden nachfolgenden Besitzer oder Benutzer des Produkts weitergeben.

Zu diesem Dokument

1.4 Abkürzungsverzeichnis

Abkürzung	Bedeutung
AnIn	Analoger Eingang
AGND	Analogue Ground
CAN	Controller Area Network
CAN_L	CAN-Low CAN-Low
CAN_H	CAN-High
CC CCD	Controller mit CANopen Schnittstelle (Faulhaber Kanal)
CO COD	Controller mit CANopen Schnittstelle nach CiA 402
CS CSD	Controller mit serieller Schnittstelle RS232
DigIn	Digitaler Eingang
DigOut	Digitaler Ausgang
EMV	Elektromagnetische Verträglichkeit
ESD	Electrostatic Discharge
FAULT	Fehlerausgang
GND	Ground
PLC	Programmable Logic Controller
PWM	Pulse Width Modulation
RxD	Receive Data
TTL	Transistor Transistor Logic
TxD	Transmit Data

Zu diesem Dokument

1.5 Symbole und Kennzeichnungen

VORSICHT!

Gefahren für Personen. Nichtbeachtung kann zu leichten Verletzungen führen.

Maßnahme zur Vermeidung

VORSICHT!

Gefahr durch heiße Oberfläche. Nichtbeachtung kann zu Verbrennungen führen.

Maßnahme zur Vermeidung

HINWEIS!

Gefahr von Sachschäden.

- Maßnahme zur Vermeidung
- Hinweise zum Verständnis oder zum Optimieren der Arbeitsabläufe
- ✓ Voraussetzung zu einer Handlungsaufforderung
- 1. Erster Schritt einer Handlungsaufforderung
 - Resultat eines Schritts
- 2. Zweiter Schritt einer Handlungsaufforderung
- ♥ Resultat einer Handlung
- Einschrittige Handlungsaufforderung

2 Sicherheit

2.1 Bestimmungsgemäße Verwendung

Die hier beschriebenen Motoren sind für Anwendungen in dezentralen Systemen der Automatisierungstechnik und in Handling- und Werkzeugmaschinen konzipiert. Für die bestimmungsgemäße Verwendung folgende Punkte beachten:

- Die Motoren entsprechend der ESD-Vorschriften behandeln.
- Die Motoren nicht in Umgebungen mit Kontaktmöglichkeiten zu Wasser, Chemie und/ oder Staub sowie nicht in explosionsgefährdeten Bereichen einsetzen.
- Die Motoren nur innerhalb der im Datenblatt spezifizierten Grenzwerte betreiben.
- Informationen über den individuellen Einsatz unter besonderen Umgebungsbedingungen beim Hersteller erfragen.

2.2 Sicherheitshinweise

HINWEIS!

Elektrostatische Ladungen können die Elektronik beschädigen.

- Ableitfähige Arbeitskleidung tragen.
- Geerdetes Handgelenkband tragen.

HINWEIS!

Eindringende Fremdkörper können die Elektronik beschädigen.

Gehäuse nicht öffnen.

HINWEIS!

Das An- und Abklemmen von Leitungen bei anliegender Betriebsspannung am Gerät kann die Elektronik beschädigen.

Leitungen bei anliegender Betriebsspannung am Gerät nicht an- oder abklemmen.

HINWEIS!

Durch Stoßeinwirkung auf die Motoren werden die Lager beschädigt und die Lebensdauer des Motors verringert.

Schock- und Schwingbelastungen gemäß Definition durch DIN EN 60068-2-27 bzw. DIN EN 60068-2-6 nicht überschreiten.

2.3 Umgebungsbedingungen

- Einbauort so wählen, dass für die Kühlung des Motors saubere und trockene Kühlluft zur Verfügung steht.
- Aufstellungsort so wählen, dass die Luft den Antrieb ungehindert umströmen kann.
- > Speziell beim Einbau in Gehäuse und Schränke die Kühlung des Motors sicherstellen.
- Versorgungsspannung innerhalb des definierten Toleranzbereichs wählen.
- Motor vor starkem Staubanfall, insbesondere Metallstaub und chemischen Schadstoffen schützen.
- Motor vor Feuchtigkeit und Nässe schützen.

2.4 EG-Richtlinien zur Produktsicherheit

- Folgende EG-Richtlinien zur Produktsicherheit beachten.
- Bei Verwendung des Motion Control Systems außerhalb der EG zusätzlich internationale, nationale und regionale Richtlinien beachten.

Maschinenrichtlinie (2006/42/EG)

Von elektrischen Kleinantrieben kann standardmäßig aufgrund ihrer geringen Größe keine nennenswerte Gefahr für Leib und Leben ausgehen. Daher trifft die Maschinenrichtlinie für unsere Produkte nicht zu. Die hier beschriebenen Produkte sind keine "unvollständigen Maschinen". Eine Einbauerklärung wird daher von FAULHABER standardmäßig nicht zur Verfügung gestellt.

Niederspannungsrichtlinie (2014/35/EU)

Die Niederspannungsrichtlinie gilt für alle elektrischen Betriebsmittel mit einer Nennspannung von 75 bis 1500 V DC, bzw. von 50 bis 1000 V AC. Die in diesem Gerätehandbuch beschriebenen Produkte fallen nicht in den Geltungsbereich dieser Richtlinie, da sie für kleinere Spannungen ausgelegt sind.

EMV-Richtlinie (2014/30/EU)

Die Richtlinie über die Elektromagnetische Verträglichkeit (EMV) gilt für alle elektronischen und elektrischen Geräte, Anlagen und Systeme, die an Endnutzer vertrieben werden. Darüber hinaus kann auch für Einbaukomponenten eine CE-Kennzeichnung nach EMV-Richtlinie vorgenommen werden. Die Übereinstimmung wird durch die Konformitätserklärung dokumentiert.

3 Produktbeschreibung

3.1 Allgemeine Produktbeschreibung

Die Antriebssysteme integrieren einen bürstenlosen DC-Servomotor, einen hochauflösenden Istwertgeber und einen Motion Controller in einer kompakten, kompletten Antriebseinheit.

Die Motorkommutierung wird elektronisch durchgeführt, so dass die Lebensdauer eines Motion Control Systems von FAULHABER hauptsächlich von der Lebensdauer der Motorlager abhängt. FAULHABER verwendet hochpräzise vorgespannte Kugellager in jedem seiner Systeme mit integriertem Motion Controller. Folgende Faktoren beeinflussen die Lagerlebensdauer:

- Statische, dynamische, axiale und radiale Lagerbelastungen
- Thermische Umgebungsbedingungen
- Drehzahl
- Schwing- und Schockbelastungen
- Präzision der Ankopplung der Welle zur gegebenen Anwendung

Für hochdynamische Servoanwendungen, die sehr hohes Drehmoment in höchst kompakten Abmessungen fordern, sind die integrierten 4-poligen DC-Servomotoren der FAULHABER BX4 Serie zu empfehlen. Sie verfügen über folgende Eigenschaften:

- Robustes Design mit wenigen Bauteilen
- Klebstofffreier Aufbau
- Hohe Produktlebensdauer
- Für raue Umgebungsbedingungen gut geeignet (z. B. extreme Temperaturen und hohe Schwing- und Schocklasten)

Die FAULHABER Motion Control Systems der Generation V2.5 sind durch ihre robuste Bauweise und ihr kompaktes Design perfekt für den Einsatz im Automatisierungsumfeld geeignet.

Eine getrennte Versorgung von Motor und Ansteuerelektronik ist optional möglich Eine getrennte versorgung von Motor and Ambetaland (wichtig für sicherheitsrelevante Anwendungen). Hierbei entfällt der 3. Eingang.

Je nach Antrieb sind zusätzliche Programmieradapter und Anschlusshilfen verfügbar.

Auf Anfrage ist eine spezielle Vorkonfiguration der Modi und Parameter möglich.

3.2 Produktinformation

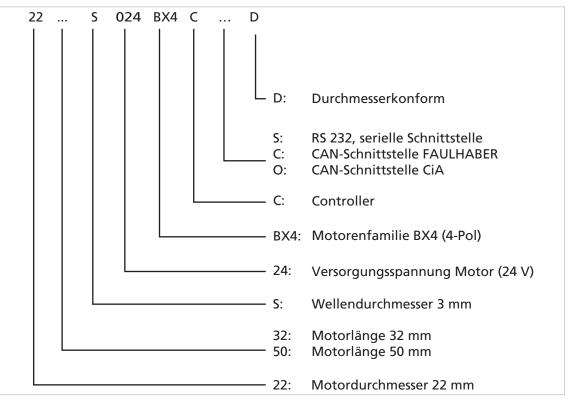


Abb. 1: Bezeichnungsschlüssel Motorbaureihe 22xx

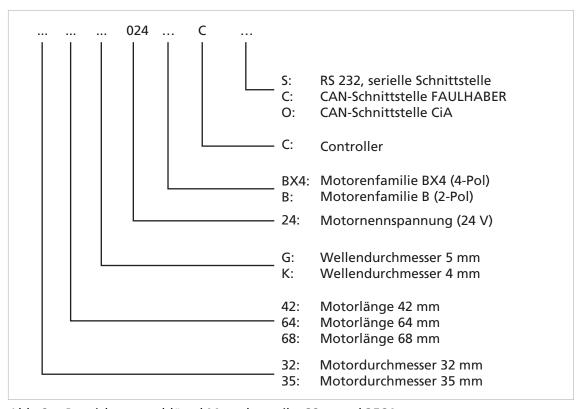


Abb. 2: Bezeichnungsschlüssel Motorbaureihe 32xx und 3564

Produktbeschreibung

3.3 Produktvarianten

Tab. 1: Produktvarianten Motion Control Systems

Motorserie Sensorik		Drehzahlbereich (min ⁻¹) ^{a)}		Spitzenstrom (A) ^{c)}
			Elektronik/Motor (V DC) b)	
2232BX4 CxD	Analog Hall	58 000	830	3
2250BX4 CxD	Analog Hall	57 000	830	3
3242BX4 Cx	Analog Hall	56 500	1230	5
3268BX4 Cx	Analog Hall	56 500	1230	8
3564B Cx	Analog Hall	512 000	1230	8

- a) Drehzahlbereich ist abhängig von der Versorgungsspannung.
- b) Eine getrennte Versorgung von Motor und Ansteuerelektronik für sicherheitsrelevante Anwendungen ist optional erhältlich (Sondernummer 2993). Hierbei entfällt der 3. Eingang für digitale Signale.
- c) Je nach Kühlfaktor, Arbeitspunkt und Umgebungstemperatur kann der Strombegrenzungsparameter über den FAULHABER Motion Manager angepasst werden. Die angegebenen Werte gelten bei 22 °C Umgebungstemperatur bzw. max. 60 °C Motortemperatur und Nennspannung für Motor und Elektronik.

4 Installation

- Vor einer Inbetriebnahme diese Beschreibung sorgfältig lesen und beachten.
- Umgebungsbedingungen beachten (siehe Kap. 2.3, S. 8).

Nur ausgebildete Fachkräfte und unterwiesene Personen mit Kenntnissen auf folgenden Gebieten dürfen die Motoren mit integriertem Speed Controller einbauen und in Betrieb nehmen:

- Automatisierungstechnik
- Normen und Vorschriften (z. B. EMV-Richtlinie)
- Niederspannungsrichtlinie
- Maschinenrichtlinie
- VDE-Vorschriften (DIN VDE 0100)
- Unfallverhütungsvorschriften

4.1 Montage

4.1.1 Montagehinweise

VORSICHT!

Der Motor kann sich im Betrieb stark erhitzen.

- ▶ Berührungsschutz bzw. Warnhinweis in unmittelbarer Nähe des Motors anbringen.
- Für ausreichende Wärmeabfuhr sorgen.

HINWEIS!

Bei Montage- und Anschlussarbeiten am Motor bei angelegter Spannung kann das Gerät beschädigt werden.

Vor allen Arten von Montage- und Anschlussarbeiten Motor spannungsfrei schalten.

HINWEIS!

Der Motor kann bei falscher Montage beschädigt werden.

Maximale Einschraubtiefe der Befestigungsschrauben beachten (siehe Tab. 2).

HINWEIS!

Eine zu große Belastung der Motorwelle kann den Motor zerstören.

Beim Aufbringen von Teilen auf die Motorwelle die maximal zulässigen Belastungswerte (siehe Produktdatenblatt) der Welle beachten.

HINWEIS!

Eine zu hohe radiale Belastung des Servomotors oder zu stark angezogene Befestigungsschrauben können den Befestigungsflansch zerstören.

- Maximal zulässige radiale Belastung des Motors beachten (siehe Tab. 2).
- > Sicherstellen, dass die Schrauben gemäß Tab. 2 angezogen sind.

4.1.2 Montage des Motors

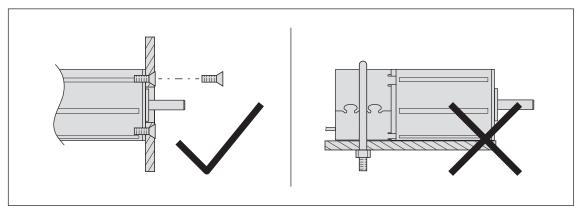


Abb. 3: Montage, Beispiel Baureihe 22xxBX4 CxD

- 1. Motor mit vorderem Flansch an geeigneter Stelle mit Befestigungsschrauben befestigen (Schraubengröße und Drehmoment siehe Tab. 2).
- 2. Befestigungsschrauben gegen thermischen Versatz sichern.
- 3. Bei Bedarf, Teile auf die Motorwelle aufbringen.
- Informationen zum verwendeten Flansch können dem Produktdatenblatt entnommen werden.

Tab. 2: Befestigungsvorgabe

rabi zi - Berestiganigsvorgabe					
Motorserie	Schraubentyp	Gewindetiefe (mm)	Max. Anzugsmoment (Ncm)	Radiale Motorbelastung, max. (N)	
22xxBX4 CxD	M2	3,0	50	30	
32xxBX4 Cx	M3	4,0	50	30	
3564B Cx	M2	5,0	50	30	

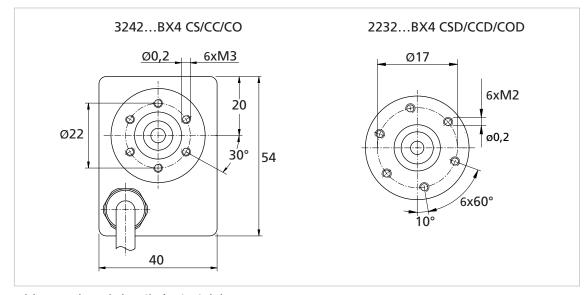


Abb. 4: Flanschdetails (Beispiele)

4.2 Elektrischer Anschluss

4.2.1 Hinweise zum elektrischen Anschluss

HINWEIS!

Elektrostatische Entladungen auf die Anschlüsse des Motors können elektronische Bauteile beschädigen

- ESD-Schutzmaßnahmen beachten.
- Nur an ESD geschützten Arbeitsplätzen arbeiten.
- Anschlüsse gemäß Anschlussbelegung anschließen (siehe Kap. 4.2.3.1, S. 17)

HINWEIS!

Beschädigungsgefahr durch rückinduzierte Spannung.

Bei externem Antrieb der Motorwelle wirkt der Motor als Generator. Die dabei erzeugte Spannung kann die Elektronik des Motors beschädigen. Die erzeugte Gleichspannung (U_B) entspricht dem Produkt aus Drehzahl (n) und Generatorspannungskonstante (k_n).

- ▶ Elektronikversorgung des Motors während der Montage an ein Netzteil anschließen oder die Anschlüsse U_B und GND miteinander verbinden.
- Motor, auch bei Verwendung eines Getriebes, nicht oberhalb der spezifizierten Maximal- bzw. Nenndrehzahl antreiben.
- EMV-Schutzbeschaltung verwenden (siehe Kap. 4.2.2.2, S. 16).

HINWEIS!

Eine starke statische oder dynamische Belastung der Anschlussleitung kann die Leitung beschädigen.

- Sicherstellen, dass die Anschlussleitung während der Installation und des Betriebs nicht scheuert, quetscht oder zu enge Biegeradien entstehen.
- ▶ Bei Temperaturen < −10 °C Leitung nicht biegen.
- Zulässige Belastungen einhalten (siehe Tab. 3).

Tab. 3: Zulässige Belastungen der Anschlussleitungen

Motorserie	Leitungstyp	Zulässige Belastungen
22xxBX4 CxD	1,27 AWG26 Flachband	Maximale Zugbelastung: 30 N Dauerzugbelastung: <17 N Biegeradius bei mehrfachem Verlegen: >10 mm Biegeradius bei einmaligem Verlegen: >1,2 mm
32xxBX4 Cx	8-adrig AWG24 Rundkabel	Maximale Zugbelastung: 50 N Dauerzugbelastung: <25 N Biegeradius bei mehrfachem Verlegen: >15 mm ^{a)} Biegeradius bei einmaligem Verlegen: >15 mm ^{a)}
3564B Cx	8-adrig AWG24 Rundkabel	Maximale Zugbelastung: 50 N Dauerzugbelastung: <25 N Biegeradius bei mehrfachem Verlegen: >15 mm ^{a)} Biegeradius bei einmaligem Verlegen: >15 mm ^{a)}

a) Sonderausführung (z. B. für Schleppkettenbetrieb) auf Anfrage

4.2.2 Motor elektrisch anschließen

4.2.2.1 Versorgungsanschluss legen

HINWEIS!

Beschädigungsgefahr durch nicht ausreichend dimensioniertes Netzgerät.

Bei Verwendung eines nicht ausreichend dimensionierten Netzgerätes kann es zu Fehlfunktionen kommen.

- Sicherstellen, dass das Netzgerät ausreichend dimensioniert ist.
- ✓ Anschlussleitungen sind <3 m</p>
- 1. EMV-Schutzmaßnahmen treffen (siehe Kap. 4.2.2.2, S. 16).
- 2. ESD-Schutzmaßnahmen treffen.
- 3. Flachbandleitung bzw. Rundkabel gemäß Anschlussbelegung anschließen (siehe Kap. 4.2.3.1, S. 17).
- 4. Stromversorgung gemäß der nachfolgenden Erklärung anschließen.

Es gibt 2 verschiedene Möglichkeiten zur Stromversorgung des Motors bzw. des FAULHABER Motion Controllers:

Stromversorgung mit gemeinsamer Elektronikversorgung

Bei einer Stromversorgung mit gemeinsamer Elektronikversorgung werden Controller und Motor im Fehlerfall gleichzeitig abgeschaltet. Nach einer Spannungsunterbrechung muss die Referenzfahrt erneut durchgeführt werden.

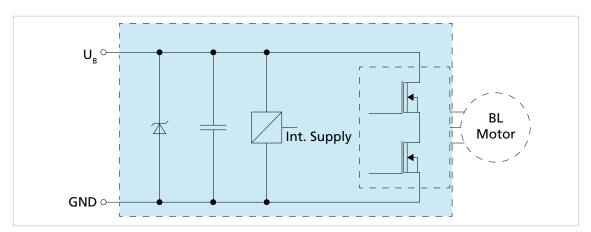


Abb. 5: Schaltbild - Gemeinsame Elektronikversorgung

Stromversorgung mit getrennter Elektronikversorgung

Bei einer Stromversorgung mit getrennter Elektronikversorgung kann die Motorversorgung (z. B. mit einem Sicherheitsrelais) im Fehlerfall abgeschaltet werden, während der Controller versorgt bleibt. Dadurch muss nach einer Störung die Referenzfahrt nicht erneut durchgeführt werden, da die Sensorversorgung des Motors während der Störung aufrecht gehalten wurde. Bei der getrennten Elektronikversorgung wird zusätzlich zum Anschluss U_B der Anschluss 3. In / U_{EL} zur Versorgung verwendet. Motion Controller mit getrennter Elektronikversorgung besitzen somit keinen dritten digitalen Eingang.

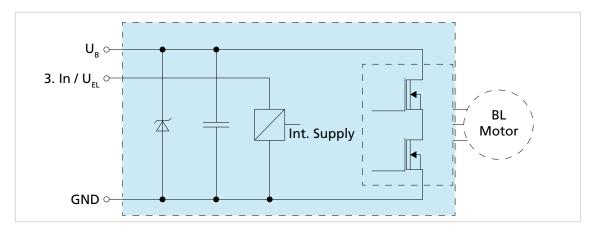


Abb. 6: Schaltbild - Getrennte Elektronikversorgung

4.2.2.2 EMV-Schutzmaßnahmen

Für die notwendige Störfestigkeit im Industriebereich kann die Verwendung eines EMV-Filters oder einer Schirmung bzw. EMV-Schutzbeschaltung notwendig sein.

Um Rückwirkungen in das DC Versorgungsnetz zu reduzieren, können Ferrithülsen L1 (z. B. WE 742 700 790) in den Zuleitungen verwendet werden.

Zum Schutz gegen Überspannung auf der Versorgungsseite (Surge) wird empfohlen, zusätzlich eine externe Diode D1 (z. B. NTE 4934, 1500 W) anzuschließen.

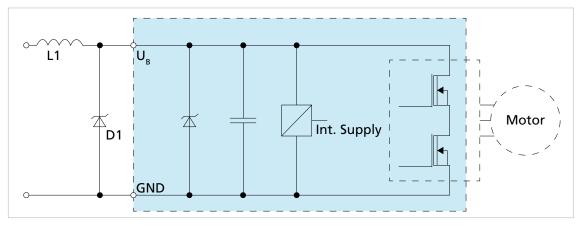


Abb. 7: EMV-Schutzbeschaltung

HINWEIS!

Beschädigungsgefahr durch EMV-Wechselwirkungen bei getrennter Elektronikversorgung

- Bei getrennter Elektronikversorgung müssen für beide Versorgungsanschlüsse EMV-Schutzmaßnahmen getroffen werden.
- Bei getrennter Elektronikversorgung (siehe Abb. 6) muss die Schutzbeschaltung (siehe Abb. 7) für beide Versorgungsanschlüsse ausgeführt werden.

4.2.3 Versorgungsanschlüsse

4.2.3.1 Anschlussbelegung

HINWEIS!

Eine falsche Polung kann die Elektronik zerstören

Motor gemäß Anschlussbelegung anschließen.

22xx...BX4 CxD

Der Signalpegel der digitalen Eingänge kann über die Schnittstelle auf TTL umkonfiguriert werden.

- Standard (SPS): Low 0...4,5 V / High 12,5 V...U_B
- TTL: Low 0...0,5 V / High 2,5 V...U_B
- Folgende Reglerparameter sind voreingestellt:
 - Abtastrate: 200 μs
 - Auflösung interner Encoder: 3 000 Impulse pro Umdrehung

Tab. 4: Anschlussbelegung der Flachbandleitung 22xx...BX4 CxD

Ader	Bezeichnung	Bedeutung
1 ^{a)}	3. ln	3. Eingang, optionale Elektronikversorgung U _{EL}
2	UB	Versorgungsspannung
3	GND	Gemeinsame Masse
4	AnIn	Analoger Eingang
5	AGND	Analog GND
6	FAULT	Fehlerausgang
7	RxD/CAN-L	RS232 RxD/CAN-Low
8	TxD/CAN-H	RS232 TxD/CAN-High
	1 a) 2 3 4 5 6 7	1 a) 3. In 2 U _B 3 GND 4 AnIn 5 AGND 6 FAULT 7 RxD/CAN-L

a) Ader 1 ist farbig markiert

Tab. 5: Elektrische Daten 22xx...BX4 CSD/CCD/COD

Ader	Bezeichnung	Wert
1 (3. ln)	Digitaler Eingang	Eingangswiderstand $R_{in} = 22 \text{ k}\Omega$
	Versorgungsspannung Elektronik ^{a)}	830 V DC
2 (U _B)	Versorgungsspannung	830 V DC
3 (GND)	Masse	Bezugsmasse U _B
4 (AnIn)	Analoger Eingang für Drehzahlsollwert	Spannungssignal ±10 V
	PWM Eingang für Drehzahlsollwert	Frequenzbereich 1002 000 Hz Tastverhältnis 50%: 0 min ⁻¹
	Digitaler Eingang	Eingangswiderstand 5 k Ω / 24 V
	Externer Encoder (CH A)	$f_{max} = 400 \text{ kHz}$
	Eingang Schrittfrequenz	$f_{max} = 400 \text{ kHz}$
5 (AGND)	Bezugsmasse Anln	
	Externer Encoder (CH B)	$f_{max} = 400 \text{ kHz}$

Installation

Ader	Bezeichnung	Wert
6 (FAULT)	Fehlerausgang	Kein Fehler → durchgeschaltet nach GND
	Digitaler Ausgang	Open Collector, max. U _B / 30 mA
	Digitaler Eingang	Eingangswiderstand R_{in} = 100 k Ω
7 (RxD/CAN-L) b)	Kommunikation	RS232 RxD/CAN-L
8 (TxD/CAN-H) b)	Kommunikation	RS232 TxD/CAN-H

- a) Sondernummer 2993
- b) Beschaltung abhängig vom gewählten Produkt CSD/CCD/COD

32xx...BX4 Cx und 3564...B Cx

Der Signalpegel der digitalen Eingänge kann über die Schnittstelle auf TTL umkonfiguriert werden.

- Standard (SPS): Low 0...7,0 V / High 12,5 V...U_B
- TTL: Low 0...0,5 V / High 3,5 V...U_B
- Folgende Reglerparameter sind voreingestellt:
 - Abtastrate: 200 μs
 - Auflösung interner Encoder: 3 000 Impulse pro Umdrehung

Tab. 6: Anschlussbelegung des Rundkabels 32xx...BX4 CS/CC/CO und 3564...B CS/CC/CO

Farbe	Bezeichnung	Bedeutung
Rot	3. ln	3. Eingang, optionale Elektronikversorgung U _{EL}
Rosa	U _B	Versorgungsspannung
Blau	GND	Gemeinsame Masse
Braun	AnIn	Analoger Eingang
Grau	AGND	Analog GND
Weiß	FAULT	Fehlerausgang
Gelb	RxD/CAN-L	RS232 RxD/CAN-Low
Grün	TxD/CAN-H	RS232 TxD/CAN-High

Tab. 7: Elektrische Daten 32xx...BX4 CS/CC/CO und 3564...B CS/CC/CO

Ader	Bezeichnung	Wert
Rot (3. In)	Digitaler Eingang	Eingangswiderstand R_{in} = 22 k Ω
	Versorgungsspannung Elektronik ^{a)}	1230 V DC
Rosa (U _B)	Versorgungsspannung	1230 V DC
Blau (GND)	Masse	Bezugsmasse U _B
Braun (AnIn)	Analoger Eingang für Drehzahlsollwert	Spannungssignal ±10 V
	PWM Eingang für Drehzahlsollwert	Frequenzbereich 1002 000 Hz Tastverhältnis 50%: 0 min ⁻¹
	Digitaler Eingang	Eingangswiderstand 5 k Ω / 24 V
	Externer Encoder (CH A)	$f_{max} = 400 \text{ kHz}$
	Eingang Schrittfrequenz	$f_{max} = 400 \text{ kHz}$

Installation

Ader	Bezeichnung	Wert
Grau (AGND)	Bezugsmasse AnIn	
	Externer Encoder (CH B)	f _{max} = 400 kHz
Weiß (FAULT)	Fehlerausgang	Kein Fehler → durchgeschaltet nach GND
	Digitaler Ausgang	Open Collector, max. U _B / 30 mA
	Digitaler Eingang	Eingangswiderstand R_{in} = 100 k Ω
Gelb (RxD/CAN-L) b)	Kommunikation	RS232 RxD/CAN-L
Grün (TxD/CAN-H) b)	Kommunikation	RS232 TxD/CAN-H

- a) Sondernummer 2993
- b) Beschaltung abhängig vom gewählten Produkt CS/CC/CO

4.2.3.2 I/O-Schaltbilder

Innenbeschaltung analoger Eingang (intern)

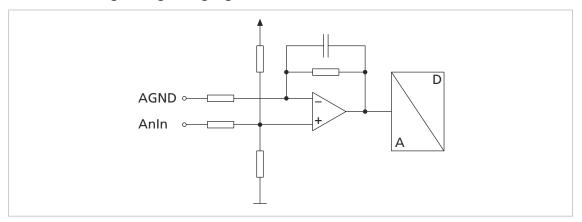


Abb. 8: Schaltbild analoger Eingang (intern)

- Die Auswertung des analogen Eingangs (AnIn) erfolgt durch Differenzbildung gegen AGND.
 - AGND muss für einen sicheren Betrieb beschaltet werden.
 - Wenn AGND direkt auf GND geschaltet wird, kann sich das resultierende Signal verändern, wenn an der Masseleitung (GND) unter Last die Spannung abfällt.
 - AGND direkt an den Bezugspunkt der Sollwertquelle anschließen.
 - Masseanschluss der Spannungsquelle (GND) verbinden.

Der analoge Eingang kann je nach Option und Konfiguration die folgenden Funktionen besitzen:

- Drehzahlsollwertvorgabe über Analogspannung
- Drehzahlsollwertvorgabe über PWM-Signal
- Strombegrenzungswert über Analogspannung
- Vorgabe der Sollposition über Analogspannung
- Digitaler Eingang für Referenz- und Endschalter
- Anschluss für einen externen Impulsgeber

Innenbeschaltung 3. Eingang

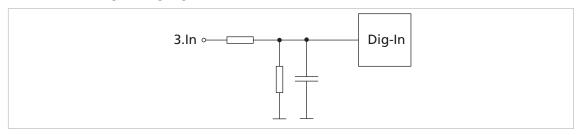


Abb. 9: Innenbeschaltung 3. Eingang

Der Eingangspegel des digitalen Eingangs (3.In) kann umgeschaltet werden (PLC/TTL). Der digitale Eingang (3. In) kann folgende Funktionen besitzen:

- Digitaler Eingang für Referenz- und Endschalter
- Eingang der Spannungsversorgung der Elektronik bei Motorausführung mit getrennter Elektronikversorgung

Innenbeschaltung Fault (Dig I/O)

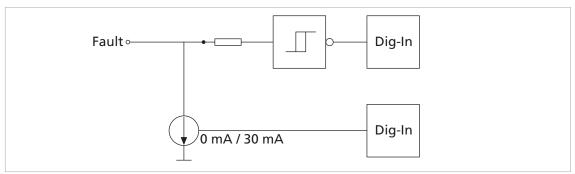


Abb. 10: Innenbeschaltung Fault (Dig I/O)

HINWEIS!

Beschädigung der Elektronik

In folgenden Fällen kann die Elektronik des Fault-Anschlusses beschädigt werden:

Fehlerausgang ist nicht als Eingang konfiguriert und eine Spannung liegt am Fehlerausgang an.

Angelegte Spannung am Fehlerausgang ist größer als die Versorgungsspannung des Motion Controllers.

Spannungsversorgung der Sensorik ist aktiv, während die Spannungsversorgung des Motion Controllers inaktiv ist.

- Einstellungen des Fehlerausgangs vor Anlegen einer Spannung prüfen.
- Versorgungsspannung der Sensorik und des Motion Controllers aufeinander abstimmen. Die Versorgungsspannungen der Sensorik dürfen nicht größer sein als die Versorgungsspannung des Motion Controllers.
- Empfehlung: Bei Verwendung des Fehlerausgangs als Eingang einen externen Widerstand (1 k Ω /0,25 W) in Reihe schalten.

Der Fehlerausgang ist werkseitig als Ausgang konfiguriert. Vor einer Beschaltung als Eingang muss der FAULT-Pin entsprechend konfiguriert werden (siehe Kommunikationshandbuch).

Installation

Der Fehlerausgang hat folgende Eigenschaften:

- Schalter, der nach GND schaltet (Open Collector)
- Ausgangswiderstand im offenen Zustand (High Pegel): 100 kΩ
- Schalter öffnet im Fehlerfall (High Pegel)
- Ausgangsstrom auf ca. 30 mA begrenzt. Die Spannung im offenen Zustand darf die Versorgungsspannung nicht übersteigen (maximal U_R).
- Kurzschlussfest

Der Fehlerausgang kann für folgende Funktionen konfiguriert werden:

- Impulsausgang
- Digitaler Ausgang (frei programmierbar)
- Referenzeingang oder digitaler Eingang
- Drehrichtungseingang

4.2.3.3 Anschlussbeispiele Motorbaureihe 22xx...BX4

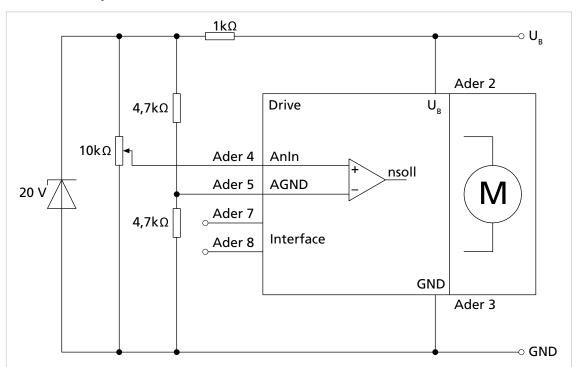


Abb. 11: Anschlussbeispiel bipolare analoge Sollwertvorgabe über Potentiometer (22xx...BX4)

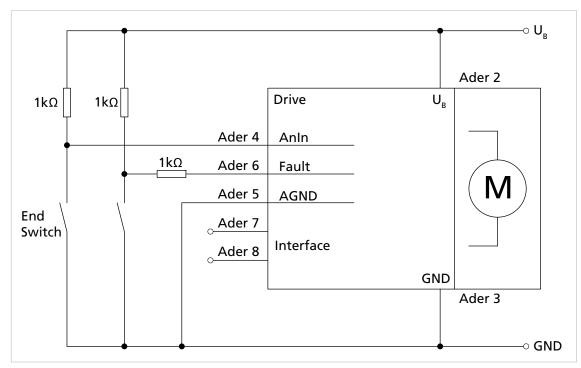


Abb. 12: Anschlussbeispiel Referenz- und Endschalter (22xx...BX4)

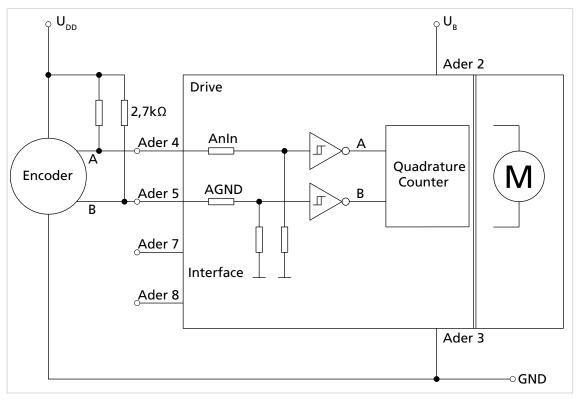


Abb. 13: Anschlussbeispiel externer Encoder (22xx...BX4)

Je nach Encodertyp kann die Verwendung von externen Pull-Up-Widerständen notwendig sein. Für die FAULHABER IE2-, IE3- und IER3-Encoder werden keine Pull-Up-Widerstände benötigt.

4.2.3.4 Anschlussbeispiele Motorbaureihe 32xx...BX4

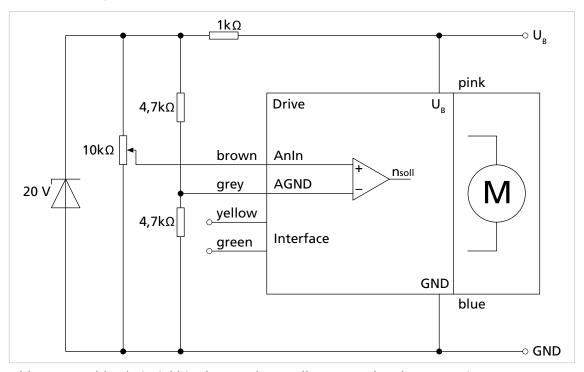


Abb. 14: Anschlussbeispiel bipolare analoge Sollwertvorgabe über Potentiometer (32xx....BX4)

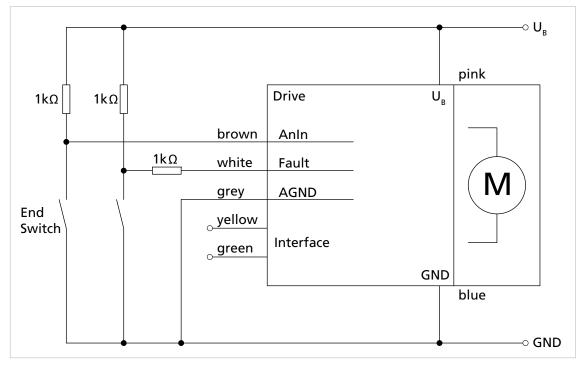


Abb. 15: Anschlussbeispiel Referenz- und Endschalter (32xx...BX4)

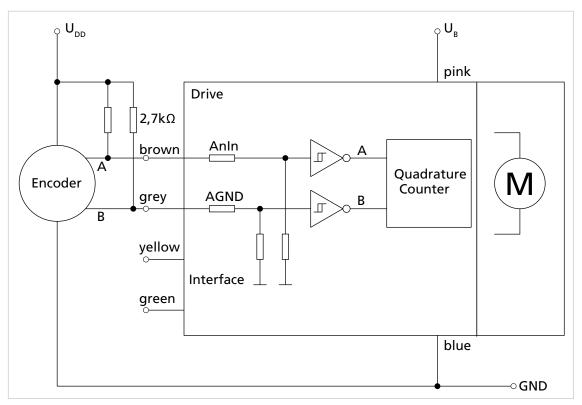


Abb. 16: Anschlussbeispiel externer Encoder (32xx...BX4)

4.2.3.5 Anschlussbeispiele Kommunikation

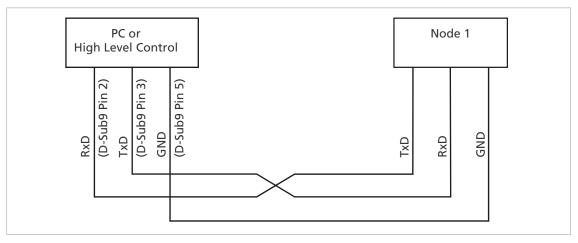


Abb. 17: Verdrahtung zwischen PC/Steuerung und einem Antrieb

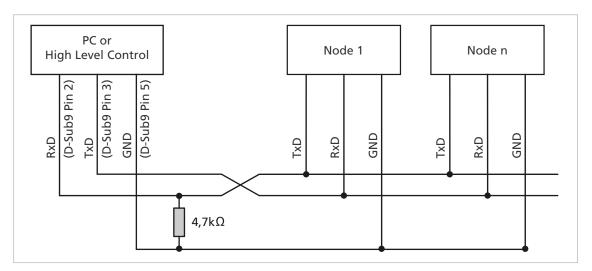


Abb. 18: Verdrahtung mit mehreren Motion Control Systemen im RS232-Netzwerkbetrieb

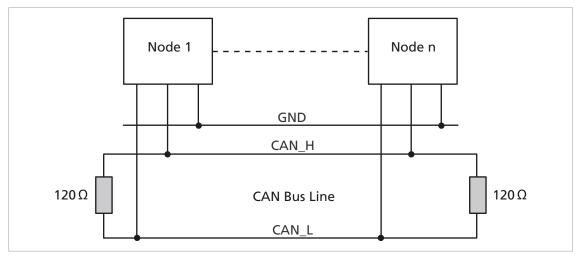


Abb. 19: Anschluss im CANopen-Netzwerk

- Die Baudrate und Knoten-Nummer werden über den Motion Manager oder durch direkte Befehlseingabe eingestellt (siehe Kommunikationshandbuch und Softwarehandbuch).
- Die maximale Leitungslänge wird durch die Übertragungsrate und die Signallaufzeiten gemäß Tab. 8 begrenzt.

Tab. 8: Maximale Leitungslänge in Abhängigkeit zur Baudrate

Baudrate (kBit/s)	Max. Leitungslänge (inkl. Stichleitung)
1000	25 m
500	100 m
250	250 m
125	500 m
50	1000 m
25	2500 m
10	5000 m

Installation

CAN ist ein Bussystem, an dem alle Knoten parallel angeschlossen werden. An jedem Ende der Busleitung muss ein Abschlusswiderstand von 120 Ω angeschlossen sein. Zusätzlich zu den beiden Signalleitungen CAN_H und CAN_L müssen die Knoten noch durch eine gemeinsame GND-Leitung miteinander verbunden sein.

- Wenn mehrere elektrische Geräte oder Ansteuerungen über RS232 oder CAN vernetzt sind, sicherstellen, dass der Potentialunterschied zwischen den Massepotentialen der Anlagenteile unter 2 V liegt.
- Der Querschnitt der nötigen Potentialausgleichsleiter zwischen verschiedenen Anlagenteilen ergibt sich aus der VDE 100 und muss folgende Bedingungen erfüllen:
- mindestens 6 mm²
- größer als der halbe Querschnitt der Versorgungsleitung

5 Wartung

Wartungshinweise 5.1

HINWEIS!

Beschädigung des Motors bei Kontakt mit Lösungsmitteln.

Gehäuse im Betrieb und bei der Wartung vor Kontakt mit Lösungsmitteln oder lösungsmittelhaltigen Substanzen schützen.

5.2 Wartungstätigkeiten

Der Motor ist grundsätzlich wartungsfrei. Je nach Staubanfall müssen die Luftfilter von Schrankgeräten regelmäßig kontrolliert und bei Bedarf gereinigt werden.

5.3 Störungshilfe

Falls bei bestimmungsgemäßer Verwendung wider Erwarten Fehlfunktionen auftreten, kontaktieren Sie bitte Ihren zuständigen Partner.

6 Zubehör

Folgenden Zubehörteile sind erhältlich:

Artikel	Artikelnummer
Kontaktieradapter	6501.00065
Kontaktieradapter	6501.00113

- Details zur Parametrierung dem Motion Manager Handbuch entnehmen (siehe Kap. 1.2, S. 4).
- Details zur Anschlussreihenfolge dem Produktdatenblatt des entsprechenden Kontaktieradapters entnehmen.

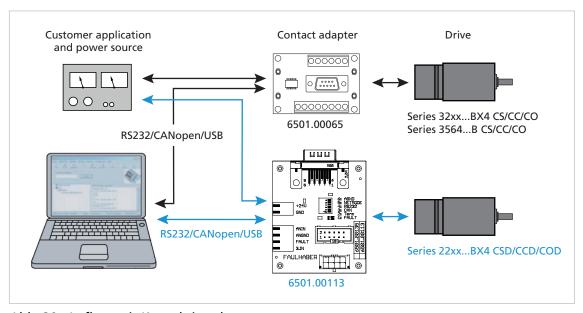


Abb. 20: Aufbau mit Kontaktieradapter

Informationen zu weiteren Zubehörteilen können dem Hauptkatalog entnommen werden.

Gewährleistung

7 Gewährleistung

Produkte der Firma Dr. Fritz Faulhaber GmbH & Co. KG werden nach modernsten Fertigungsmethoden hergestellt und unterliegen einer strengen Qualitätskontrolle. Alle Verkäufe und Lieferungen erfolgen ausschließlich auf Grundlage unserer allgemeinen Geschäfts- und Lieferbedingungen, die über die FAULHABER Homepage www.faulhaber.com/agb eingesehen und heruntergeladen werden können.

DR. FRITZ FAULHABER GMBH & CO. KG Antriebssysteme

Daimlerstraße 23 / 25 71101 Schönaich • Germany Tel. +49(0)7031/638-0 Fax +49(0)7031/638-100 info@faulhaber.de www.faulhaber.com